Incorporating urban infrastructure into biogeochemical assessment of urban tropical streams in Puerto Rico

TitleIncorporating urban infrastructure into biogeochemical assessment of urban tropical streams in Puerto Rico
Publication TypeJournal Article
Year of Publication2014
AuthorsPotter, JD, William H. McDowell, Helton, AM, Daley, ML
JournalBiogeochemistry
Volume121
Pagination271–286
Accession NumberLUQ.1183
Other Numbers1183
KeywordsImpervious surface, Sewer pipes, stream chemistry, Tropical, Urbanization, Water pipes
Abstract

The influence of built urban infrastructure on stream chemistry was quantified throughout the drainage network of the tropical Rio Piedras watershed, San Juan metropolitan area, Puerto Rico. Urbanization and failing domesticwastewater infrastructure appeared to drive changes in surface water chemistry throughout the watershed. Mean baseflow concentrations of chloride(Cl), ammonium (NH4), dissolved organic carbon(DOC), dissolved organic nitrogen (DON), and phosphate(PO4) all increased with urban infrastructure, while nitrate (NO3) and dissolved oxygen (DO)decreased. These patterns in stream chemistry suggest that sewage effluent from failing or illegally connected sewer pipes has a major impact on surfacewater quality. Concentrations of Cl, DO, and NH4 in stream water were most strongly related to sewer pipe volume, demonstrating the tight connection between urban infrastructure and stream chemistry. The loading and transformation ofNO3 andNH4 weremodeled along the river network and NH4 loading rates from the landscape were strongly related to urban infrastructure, whereas NO3 loading rates showed only weak relationships,highlighting the importance for incorporating NH4 dynamics into river network models in urban environments. Water quality appears to be severely impacted by sewage in this tropical basin, despite large investments in built infrastructure. The high temperatures in the Rio Piedras exacerbate water quality problems by reducing saturation DO levels in streams, and intense rainstorms tax the ability of built infrastructure to adequately manage overland flows. These problems are likely typical of much of the urbanized humid tropics.

DOI10.1007/s10533-013-9914-5
Short TitleIncorporating urban infrastructure into biogeochemical assessment of urban tropical streams in Puerto Rico